Parameters for Molecular Mechanics

2/18/99
Back to Index


Click here to start


Click here for Handout sheets (6 slides/page)



NOTICE: This material is copyrighted and all right are reserved. (c) 1998, 1999 J. E. Wampler
Students may make a single copy for study purposes.

Table of Contents

Parameters for Molecular Mechanics

Parameter optimization

Parameter optimization...

Parameter optimization… What goal?

Parameter optimization...

Parameter optimization...

General Principles and Issues Remember: Goal is parameters that “fit in” to the force field. Therefore: We must understand where the built-in parameters of that particular force field came from.

General Principles & Issues...

Some Recipes

Parameters based on other parameters

Extrapolating based on bond-lengths comes from correlation between Lengths, bond order and force constants:

AMBER Parmeters taken from MM3

However, the resulting parameters correlate well with existing ones.

Parameters based on experimental data

Transfer force parameters from analysis of vibrational spectra

Fit non-bonded parameters to simulate pure fluid properties

OPLS non-bonded potential between atoms i and j:

Comparison of non-bonded parameters*:

Extract equilibrium parameters from known structures.

HOWEVER...

Fit parameters to give experimental geometries

Parameters from theoretical calculations

Direct evaluation of individual potentials

Direct evaluation…Bond stretch parameters High level ab initio bond lengths vs experimental

Example, Morse potential fit to the formaldehyde carbonyl stretch*

What about a harmonic fit to this data?

Example cont., harmonic fit to the H-C-H bending of formaldehyde*

Closer look… Formaldehyde

Direct evaluation... Force constants for bond stretch:

Matching Calculated Data sets II. Step-Wise Approach (Hopfinger & Pearlstein, 1984):

Step wise...

Matching Calculated Data sets... III. Global Approach (Cannon, 1993).

Hybrid parameters sets

Hybrid parameters sets…

Norrby & Liljefors (1998)...

Author: J. E. Wampler

References:

General Reference and References Cited (alphabetical):
NOTE: References for AMBER, CHARMm, MM3 and OPLS parameters are given separately below
Bowen, J. P., and N. L. Allinger (1991) in Review of Computational Chemistry 1 (K. Lipkowitz, ed.) pp. 81-97.

Cannon, J. F. (1993), J. Comp. Chem. 14, 995-1005.

Comba, P., and Hambley, T. W. (1995) Molecular Modeling of Inorganic Compounds, VCH, Weinheim, Germany.

Hay, B. P. (1993) Methods for molecular mechanics modeling of coordination compounds, Coord. Chem. Rev. 126, 177-236.

Hay, B. P., Yang, L., Lii, J-H., and Allinger, N. L. (1998) An extended MM3(96) force field for complexes of the group 1A and 2A cations with ligands bearing conjugated ether donor groups, Theochem: J. Molecular Structure 428, 203-219,

Hopfinger, A. J. & R. A. Pearlstein (1994), J. Comp. Chem. 5, 486-499.

Leach, A. R. (1996) Molecular Modeling Principles and Applications, Addison Wesley, Longman Limited, Essex, England

Liang, G. Y., Fox, P. C., and Bowen, J. P. (1996) Parameter Analysis and refinement toolkit system and its application in MM3 parameterization for Phosphine and its derivatives, J. Comp. Chem. 17, 940-953.

Norrby, P-O., and Liljefors, T. (1998) Automated molecular mechanics parameterization with simultaneous utilization of experimental and quantum mechanical data, J. Comp. Chem. 19, 1146-1166.

Orozco, M., & Luque, F. J., (1993), J. Comp. Chem. 14, 881-894.

Palma, P. N. L. (1998), "Studies of Macromolecular Recognition and Prediction of Redox Properties of Metalloproteins," Doctoral Dissertation, Universidade Nova de Lisboa, Portugal.

Schnur, D. M., M. V. Grieshaber and J. P. Bowen (1991), J. Comp. Chem. 12, 844-849.

OPLS Parameters:
Jorgensen, W. L., & Tirado-Rives, J.,(1988) The OPLS Potential Functions for Proteins. Energy Minimization for Crystals of Cyclic Peptides and Crambin, J. Am. Chem. Soc. 110, 1657-1666.

Kaminski, G., Duffy, E. M. Matsui, T., and Jorgensen, W. L. (1994) J. Phys. Chem. 98, 13077-13082.

Developement of MM3 Parameters:
Lii, J-H., & Allinger, N. L. (1989a) Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics, J. Am. Chem. Soc. 111, 8566-8575.

Lii, J-H., & Allinger, N. L. (1989b) Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der Waals Potentials and Crystal data for Aliphatic and Aromatic Hydrocarbons, J. Am. Chem. Soc. 111, 8576-8582.

Lii, J-H., & Allinger, N. L. (1991) The MM3 Force Field for Amides, Polypeptides and Proteins, J. Comp. Chem. 12, 186-199.

Lii, J-H., & Allinger, N. L. (1998) Directional Hydrogen Bonding in the MM3 Force Field. II. J. Comp. Chem. 19, 1001-1016.

Development of AMBER Parameters:
Weiner, P. K., & Kollman, P. A., (1981) AMBER: Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions, J. Comp. Chem. 2, 287-303.

Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Jr., Weiner, P.K. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765-784.

Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A., (1986) "An All Atom Force Field for Simulations of Proteins and Nucleic Acids," J. Comp. Chem. 7, 230-252.

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M. Jr., Ferguson, D. M. Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc. 117, 5179-5197.

CHARMm Paramters:
Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M. CHARMM: A program for macromolecular energy, minmimization, and dynamics calculations. J. Comp. Chem. (1983) 4, 187-217.

Momany, F. A., & Rone, R., (1992) Validation of the General Purpose QUANTA 3.2/CHARMm Force Field, J. Comp. Chem. 13, 888-900.